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Note 

Shock Wave Propagation in an Inhomogeneous 

Medium Using Finite Differences 

INTRODUCTION 

Finite-difference fluid equations have been known [l-4] to provide valid solu- 
tions to problems containing shocks when the physically correct conservation 
variables in conservation form are used. In this note, we examine the problem of 
shock propagation in an inhomogeneous medium with exponentially varying 
density. The problem and its analytical solution for both the increasing and 
decreasing density cases are well described by Zeldovich and Raizer [5]. This 
one-dimensional self-similar analytic solution will be compared to various numeri- 
cal solutions using different algorithms. This problem constitutes a more severe 
numerical test for shock propagation than the shock wave in an homogeneous 
medium and therefore serves as a better test of numerical algorithms. 

In particular we find that care must be taken in the use of forms of the hydro- 
dynamic equations which do not express physical conservation. For nonconserva- 
tion formulations of the energy equation an artificial viscosity must be introduced 
[6], not only to provide the necessary stability, but also to provide shock heating. 
The magnitude of this artificial viscosity to obtain best shock results depends on 
the grid size and the problem type. There is no simple way to obtain this optimal 
viscosity for problems where the solution is not known in advance. 

In addition, we find that flux-corrected transport [7] (FCT) has several properties 
which make it more flexible and effective for shock calculations. While the com- 
parison between different energy formulations has been made easier through the 
use of the FCT scheme, the results hold for any finite-difference algorithm and 
in particular they will be shown to hold using the Lax-Wendroff scheme as well. 

Three different variables have been used for the energy equation, while the 
continuity and momentum equations have been treated in their usual conservative 
form. The numerical algorithms used treat all conservative terms in conservative 
finite-difference form. Use has been made of a Lax-Wendroff scheme (LW) and 
a flux-corrected transport (FCT) scheme. The Lax-Wendroff scheme uses the 
two-step Richtmeyer form coupled with a Von Neumann viscosity to provide 
the additional stability and viscous heating needed near the shocks. The FCT 
scheme makes use of artificial viscosity (Von Neumann type) when the energy 
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equation is cast in terms of the pressure or temperature variable, to provide the 
viscous heating otherwise lacking in the shocks. Artificial viscosity is not needed 
in the strict conservative formulation. 

The total energy, pressure and temperature equations are respectively: 

@E/at) + V . VE = -V * (p + q)v (1) 

@P/at) + v  . VP = -(y - l)(P + qp . v  (2) 

@T/W + V * VT = -KY - 2)T + (r - Wp)lV . v (3) 

q = +(6x2) I au/ax I au/ax (4) 

where E = P(E + $v2) and E = p/(y - 1)~ for a perfect gas. 
The failure to compute accurately the dissipation mechanism which converts 

kinetic energy to thermal energy in a shock leads to a failure to conserve energy 
in the temperature and pressure formulations and hence gives incorrect results 
for the shock dynamics. Since the total energy equation is in divergence form 
whether the viscosity terms are includeb or not, conservation of energy is auto- 
matically guaranteed when a conservative difference scheme is applied. In the 
remainder of this note we will show the results of several test calculations 
demonstrating this. Section 2 shows the results for a shock propagating into an 
exponentially increasing density medium. The results of the different formulations 
are compared for several values of the artificial viscosity parameters and grid 
sizes. In Section 3 the results for the decreasing density case are shown and in 
Section 4 the conclusions that can be drawn from this study are made. 

RESULTS FOR INCREASING DENSITY CASE 

For a y = 2 gas the self-similar solution is completely analytic [5]. From the 
Rankine-Hugoniot relations, we expect the density jump across the shock to be 
equal to 3. Figure 1 shows density profiles for the energy and temperature equations 
respectively for the LW and FCT schemes after a time t = 350 6t. At that time, 
the shock has moved over a distance equal to 1.34 where d is the characteristic 
length, or scale height of the medium. Only one value of the viscosity coefficient 
is shown for illustrative purposes. The effect of nonconservation is shown clearly. 
In the LW total energy formulation, the value of the artificial viscosity affects 
mainly the stability of the solution (and the amplitude of the ripples behind the 
shock); in the temperature formulation, it changes the speed of propagation of 
the shock significantly. For the latter equation, we find [8] that the larger the vis- 
cosity coefficient, the more the viscous heating and the better the agreement 
between the numerical solution and the analytic solution. However, the peak 
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density behind the shock decreases with increasing artificial viscosity coefficient b. 
The density profiles cannot be taken as the only criteria of good numerical 
solutions. 
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FIG. 1. Shock density profiles for shock propagating in the increasing density direction. 
Different energy equation formulations with flux-corrected transport (FCT) and Lax-Wendroff 
(LW) algorithms. The shock was located at x = 0 at I = 0. 

As expected, it is found that energy conservation is better achieved by using 
the total energy formulation. In fact it was found that for the correct energy 
conserving formulation, the integrated thermal energy is increasing with time, 
whereas in the case of the temperature formulation it is actually decreasing. As 
we have pointed out, this loss of thermal energy reduces the driving force of the 
shock and results in the shock lagging behind the correct solution. When the 
temperature equation is used, energy conservation is improved by increasing the 
magnitude of the artificial viscosity coefficient. Because FCT allows us to run 
without any artificial viscosity a limiting interesting case is shown in the same 
figure where q has been set equal to 0 for the FCT temperature equation formula- 
tion. The shock lags behind its exact solution to a much larger extent than shown 
in any other case and 36 y0 of the total energy is lost in that extreme case. 

Variations of the Results with Grid Size 

Results shown previously have been obtained with a fixed grid size corre- 
sponding to a spatial resolution of 40 gridpoints per scale height. In practice, 
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the resolution is often much coarser so the influence of the spatial resolution on 
the results is now investigated. Figure 2 shows the results for the density profiles 
when the grid size 6x is multiplied by 4 so the scale height is made up of 10 grid- 
points; the density profile in the shock broadens and the peak value of the density 
just behind the shock decreases. For this kind of spatial resolution, all equations 
have difficulty in simulating the presence of a strong shock and in fact look similar. 
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FIG. 2. Influence of grid size. Grid size is four times as large as for Figs. 1 and 3. Shook 
density profiles are shown for various energy equation formulations using FCT and for the total 
energy equation using LW (ELw). 

The two-cell wide flat top on the density profile is characteristic of FCT [9]. The 
energy equation, although showing a reduced density ratio across the shock, still 
approximates fairly well the shock location and yields energy conservation. The 
two other energy equation formulations gain energy by 10 to 16 % with the pressure 
equation more nearly conserving energy. Although the effect of grid size is supposed 
to be scaled out of the problem by the form of the artificial viscosity used, in effect 
when the nonconservative formulations are used energy conservation and shock 
location are altered by changes in grid resolution even when the same coefficient 
of artificial viscosity is used. Clearly, for this resolution, information about the 
shock has been mostly lost for both temperature and pressure equations and 
suggests that even 10 gridpoints per scale height with the energy equation represents 
a minimum resolution in order to provide a meaningful solution. 

The results presented so far indicate that only the total energy equation formula- 
tion yields a correct result in which the shock location does not depend strongly 
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on the viscosity coefficient or on changes in the grid size. For the other energy 
equation formulations, although it is possible to find an optimum value for the 
viscosity coefficient in each specific case, this value is not independent of changes in 
grid size or problem parameters. 

RESULTS FOR DECREASING DENSITY CAKE 

In case of an exponentially decreasing density medium, the “analytic” self- 
similar solution does not exist and has to be replaced by the numerical solution 
of the ordinary-differential equations appearing in [5]. 

The specific heat ratio y was chosen to be equal to 7/5 for this case (01 = 5.45) 
and results are summarized briefly below. 

Figure 3 shows the density profiles for a very strong shock propagating in a 
decreasing density medium for the FCT and LW schemes, respectively. At the 
time it is shown (t = 200 8t) the shock has traveled approximately a distance equal 
to 1.24. The grid size is the same as that used in Fig. 1. Note that this time the 
shock is accelerating. 
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FIG. 3. Shock density profiles for shock propagating in the decreasing density direction. 
Temperature and energy equation formulations using FCT and LW. The shock was located 
at x = 0 at t = 0. 

Several interesting features may be noted from this graph. First, using the same 
artificial viscosity coefficient as in Fig. 1 results in the shock propagating too fast 
for both the FCT and LW schemes using the temperature equation. This is in 
contrast to the results of the increasing density case shown in Fig. 1 where a 
coefficient b = 2 resulted in too slow a shock propagation. 
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Integrated total and thermal energies can be computed as previously. The 
differences are much smaller for this decreasing density case (of the order of 3 %) 
and this can easily be explained by the fact that since the shock propagates into 
a region of decreasing density, the energy carried by the shock represents a 
decreasingly smaller fraction of the total initial energy. Thus, the error in the 
shock dynamics is not reflected as much in the total energy conservation and 
energy conservation is a less useful check on accuracy. 

CONCLUSIONS 

In this study, it has been shown that the numerical results obtained for shock 
speed and instantaneous profile in an exponentially varying density medium can 
differ largely due to the choice of energy equation and spatial resolution. By com- 
parison with an analytic solution, it has been shown that only the conservative 
energy equation is reliable. Even in this best case, a fairly fine spatial resolution is 
needed in order to derive accurate results. The total energy equation is thus 
superior in all respects to the nonconservative forms. Although this result is 
already known [4] attempts to use the nonconservative formulation with artificial 
viscosity for viscous heating in shocks have been made repeatedly. Further, this 
work has allowed us to quantify this notion for specific cases by estimating the 
error made when a nonconservative form is used. 

The inclusion of some artificial viscosity is necessary not only for stability but 
to produce the necessary shock heating in the case of the temperature and pressure 
formulations. By suitable adjustment of the coefficient of artificial viscosity one 
can obtain a wide range of shock profiles and shock heating and achieve near 
conservation and therefore good solutions. However, it was found that there is 
no unique way to choose this coefficient and the precise value to achieve conserva- 
tion depends both on the grid size and the nature of the problem. 

The FCT algorithm does not require artificial viscosity for stability and main- 
tains a steep profile rather independent of the value of artificial viscosity. Thus, 
if the temperature or pressure equation must be used, FCT gives more flexibility 
in achieving the correct amount of heating in the shock front. In addition, in the 
case of the total energy formulation, the FCT scheme requires no artificial viscosity 
at all, removing an eventual additional restriction on the time step. 
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